Complete References List

1.      Ronghua, Y., Mark, A. F. & Wilson, J. B. Aspects of the ecology of the indigenous shrub Leptospermum scoparium (Myrtaceae) in New Zealand. N. Z. J. Bot. 22, 483–507 (1984).
2.      Prosser, J. A. Manuka (Leptospermum scoparium) as a remediation species for biosolids amended land : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Soil Science at Massey University, Manawatu, New Zealand. (2011). at
3.      Brooker, S. G., Cambie, R. C. & Cooper, R. C. Economic native plants of New Zealand. Econ. Bot. 43, 79–106 (1989).
4.      Crowe, A. A Field Guide to the Native Edible Plants of New Zealand.
5.      Stark, D. R. & Enting, B. Maori Herbal Remedies (Described, Identified, Illustrated). (1979).
6.      Te Papa. Māori Medicine (Rongoa) - Museum of New Zealand Te Papa Tongarewa, Wellington, NZ. at
7.      S. G. Brooker, R. C. Cambie & R. C. Cooper. New Zealand Medicinal Plants. (Reed Books, 1991).
8.      Taonga, N. Z. M. for C. and H. T. M. Rongoā – medicinal use of plants. at
9.      Pip M. E. Williams. Te Rongoa Maori Medicine. (Reed Publishing, 2007).
10.    Macdonald Christina. Medicines of the Maori. (Collins New Zealand Books, 1973).
11.    Riley, M. Maori Healing and Herbal. (2010).
12.    Handbook of Essential Oils: Science, Technology, and Applications. at
13.    Carson, C. F. & Hammer, K. A. in Lipids and Essential Oils as Antimicrobial Agents (ed. Thormar, H.) 203–238 (John Wiley & Sons, Ltd, 2011). at
14.    Schnitzler, P., Astani, A. & Reichling, J. in Lipids and Essential Oils as Antimicrobial Agents (ed. Thormar, H.) 239–254 (John Wiley & Sons, Ltd, 2011). at
15.    Hammer, K. A. & Carson, C. F. in Lipids and Essential Oils as Antimicrobial Agents (ed. Thormar, H.) 255–306 (John Wiley & Sons, Ltd, 2011). at
16.    Noel Porter, Bruce Smallfield, Malcolm Douglas, Nigel Perry & John van Klink. Essential oil production from manuka & kanuka. 4 (New Zealand Institute for Crop & Food Research Ltd A Crown Research Institute, 2000).
17.    Douglas1, M., Anderson1, R., van Klink, J., Perry, N. & Smallfield, B. Defining North Island manuka chemotype resources. 15 (New Zealand Crop & Food Research Limited, 2001). at
18.    Perry, N. B. et al. Essential oils from New Zealand manuka and kanuka: Chemotaxonomy of Leptospermum. Phytochemistry 44, 1485–1494 (1997).
19.    Douglas, M. H. et al. Essential oils from New Zealand manuka: triketone and other chemotypes of Leptospermum scoparium. Phytochemistry 65, 1255–1264 (2004).
20.    Phillips, M. A. & Rodríguez Concepción, M. in eLS (John Wiley & Sons, Ltd, 2001). at
21.    Gershenzon, J. & Dudareva, N. The function of terpene natural products in the natural world. Nat. Chem. Biol. 3, 408–414 (2007).
22.    Jonathan McD C Stephens. The factors responsible for the varing levels of UMF in manuka (Leptospermum scoparium) honey. (University of Waikato, 2006).
23.    Roy Gardner. The Essential Oil of Manuka (Leptospermum Scoparium). J. Soc. Chem. Ind. 44, T527–T532 (T528–T530) (1925).
24.    Briggs, L. H., Hassall, C. H. & Short, W. F. 187. Leptospermone. Part II. J. Chem. Soc. Resumed 706–709 (1945). doi:10.1039/JR9450000706
25.    Bick, I. R. C., Blackman, A. J., Hellyer, R. O. & Horn, D. H. S. 675. The isolation and structure of flavesone. J. Chem. Soc. Resumed 3690–3693 (1965). doi:10.1039/JR9650003690
26.    van Klink JW, Brophy, Perry & Weavers. beta-triketones from myrtaceae: isoleptospermone from leptospermum scoparium and papuanone from corymbia dallachiana. J. Nat. Prod. 62, 487–489 (1999).
27.    Porter, N. G. & Wilkins, A. L. Chemical, physical and antimicrobial properties of essential oils of Leptospermum scoparium and Kunzea ericoides. Phytochemistry 50, 407–415 (1999).
28.    Courtney, W. J. Antimicrobial composition comprising Leptospermum scoparium and Melaleuca ... (2003).
29.    ISO STANDARD 4730 for Australian Tea Tree Oil. (2004).
30.    Roy Gardner. The Essential Oile of Manuka (Leptospermum scoparium). J. Soc. Chem. Ind. (1924).
31.    W. F. Short. The Essential Oile of Manuka (Leptospermum scoparium). J. Soc. Chem. Ind. 96 T (1926).
32.    Briggs, L. H., Penfold, A. R. & Short, W. F. 221. Leptospermone. Part I. J. Chem. Soc. Resumed 1193–1195 (1938). doi:10.1039/JR9380001193
33.    Nancy Atkinson & Helen E Brice. ANTIBACTERIAL SUBSTANCES PRODUCED BY FLOWERING PLANTS. 2. THE ANTIBACTERIAL ACTION OF ESSENTIAL OILS FROM SOME AUSTRALIAN PLANTS. Aust. J. Exp. Biol. Med. Sci. 33, 547–554 (1955).
34.    Cooke, A. & Cooke, M. An investigation into the Antimicrobial Properties of Manuka and Kanuka Oil. (Cawthron Institute, New Zealand, 1994).
35.    Rhee, G. ., ., Chung, K.-S., ., Kim, E. ., ., Suh, H. ., . & Hong, N. D. . Antimicrobial activities of a steam distillate of Leptospermum scoparium. Yakhak Hoeji 41, 132–8 (1997).
36.    Perry, N. B. et al. Essential oils from new zealand manuka and kanuka: Chemotaxonomy of Kunzea. Phytochemistry 45, 1605–1612 (1997).
37.    Williams, L. R., Stockley, J. K., Yan, W. & Home, V. N. Essential oils with high antimicrobial activity for therapeutic use. Int. J. Aromather. 8, 30–40 (1998).
38.    Kim, E. H. & Rhee, G. J. Activities of ketonic fraction from Leptospermum scoparium alone and synergism in combination with some antibiotics against various bacterial strains and fungi. Yakhak Hoeji 43, 716–28 (1999).
39.    Christoph, F., Kaulfers, P.-M. & Stahl-Biskup, E. A Comparative Study of the in vitro Antimicrobial Activity of Tea Tree Oils s.l. with Special Reference to the Activity of β-Triketones. Planta Med. 66, 556–560 (2000).
40.    Kath Coopey (NZ/MLT Dip/Micro).
41.    Christoph, F., Stahl-Biskup, E. & Kaulfers, P.-M. Death Kinetics of Staphylococcus aureus Exposed to Commercial Tea Tree Oils s.l. J. Essent. Oil Res. 13, 98–102 (2001).
42.    Harkenthal, M., Reichling, J., Geiss, H. K. & Saller, R. Comparative study on the in vitro antibacterial activity of Australian tea tree oil, cajuput oil, niaouli oil, manuka oil, kanuka oil, and eucalyptus oil. Pharm. 54, 460–463 (1999).
43.    Lis-Balchin, M., Hart, S. L. & Deans, S. G. Pharmacological and antimicrobial studies on different tea-tree oils (Melaleuca alternifolia, Leptospermum scoparium or Manuka and Kunzea ericoides or Kanuka), originating in Australia and New Zealand. Phytother. Res. PTR 14, 623–629 (2000).
44.    Takarada, K. P29 The effects of essential oils on periodontopathic bacteria and oral halitosis. Oral Dis. 11, 115–115 (2005).
45.    Takarada K. et al. A comparison of the antibacterial efficacies of essential oils against oral pathogens. Oral Microbiol. Immunol. 19, 61–64 (2004).
46.    Maddocks-Jennings, W., Wilkinson, J. M., Cavanagh, H. M. & Shillington, D. Evaluating the effects of the essential oils Leptospermum scoparium (manuka) and Kunzea ericoides (kanuka) on radiotherapy induced mucositis: A randomized, placebo controlled feasibility study. Eur. J. Oncol. Nurs. 13, 87–93 (2009).
47.    Jeong, E.-Y., Jeon, J.-H., Kim, H.-W., Kim, M.-G. & Lee, H.-S. Antimicrobial activity of leptospermone and its derivatives against human intestinal bacteria. Food Chem. 115, 1401–1404 (2009).
48.    Alnaimat, S. A CONTRIBUTION TO THE STUDY OF BIOCONTROL AGENTS APITHERAPY AND OTHER POTENTIAL ALTERNATIVES TO ANTIBIOTICS. (University of Sheffield, 2011). at
49.    Song, C.-Y., Nam, E.-H., Park, S.-H. & Hwang, C.-Y. In vitro efficacy of the essential oil from Leptospermum scoparium (manuka) on antimicrobial susceptibility and biofilm formation in Staphylococcus pseudintermedius isolates from dogs. Vet. Dermatol. 24, 404–e87 (2013).
50.    Cotton, S. Compositions and dressings for the treatment of wounds. (2007).
51.    Harcourt, N. R. ANTIMICROBIAL COMPOSITION AND ITS METHOD OF USE. (2013). at
52.    Singh, T. & Chittenden, C. Efficacy of essential oil extracts in inhibiting mould growth on panel products. Build. Environ. 45, 2336–2342 (2010).
53.    Reichling, J., Koch, C., Stahl-Biskup, E., Sojka, C. & Schnitzler, P. Virucidal activity of a beta-triketone-rich essential oil of Leptospermum scoparium (manuka oil) against HSV-1 and HSV-2 in cell culture. Planta Med. 71, 1123–1127 (2005).
54.    Schnitzler, P., Wiesenhofer, K. & Reichling, J. Comparative study on the cytotoxicity of different Myrtaceae essential oils on cultured Vero and RC-37 cells. Pharm. - Int. J. Pharm. Sci. 63, 830–835 (2008).
55.    Reichling, J., Schnitzler, P., Suschke, U. & Saller, R. Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties–an overview. Forsch. KomplementärmedizinResearch Complement. Med. 16, 79–90 (2009).
56.    Magsombol, M. Antiviral activity of selected essential oils and terpenes. (University of Vienna, 2012). at
57.    Chen, C.-C. et al. Investigations of kanuka and manuka essential oils for in vitro treatment of disease and cellular inflammation caused by infectious microorganisms. J. Microbiol. Immunol. Infect. (2014). doi:10.1016/j.jmii.2013.12.009
58.    Kwon, O. S., Jung, S. H. & Yang, B. S. Topical Administration of Manuka Oil Prevents UV-B Irradiation-Induced Cutaneous Photoaging in Mice. Evid. Based Complement. Alternat. Med. 2013, e930857 (2013).
59.    GEORGE, D. R. et al. Environmental interactions with the toxicity of plant essential oils to the poultry red mite Dermanyssus gallinae. Med. Vet. Entomol. 24, 1–8 (2010).
60.    George, D. R., Smith, T. J., Shiel, R. S., Sparagano, O. A. E. & Guy, J. H. Mode of action and variability in efficacy of plant essential oils showing toxicity against the poultry red mite, Dermanyssus gallinae. Vet. Parasitol. 161, 276–282 (2009).
61.    GEORGE, D. R. et al. Toxicity of plant essential oils to different life stages of the poultry red mite, Dermanyssus gallinae, and non-target invertebrates. Med. Vet. Entomol. 24, 9–15 (2010).
62.    Jeong, E.-Y., Kim, M.-G. & Lee, H.-S. Acaricidal activity of triketone analogues derived from Leptospermum scoparium oil against house-dust and stored-food mites. Pest Manag. Sci. 65, 327–331 (2009).
63.    Crook, D. J. et al. Development of a Host-Based Semiochemical Lure for Trapping Emerald Ash Borer Agrilus planipennis (Coleoptera: Buprestidae). Environ. Entomol. 37, 356–365 (2008).
64.    Crook, D. J., Khrimian, A., Cossé, A., Fraser, I. & Mastro, V. C. Influence of Trap Color and Host Volatiles on Capture of the Emerald Ash Borer (Coleoptera: Buprestidae). J. Econ. Entomol. 105, 429–437 (2012).
65.    Mccullough, D. G., Siegert, N. W., Poland, T. M., Pierce, S. J. & Ahn, S. Z. Effects of Trap Type, Placement and Ash Distribution on Emerald Ash Borer Captures in a Low Density Site. Environ. Entomol. 40, 1239–1252 (2011).
66.    Crook, D. J. et al. Improving detection tools for emerald ash borer (Coleoptera: Buprestidae): comparison of multifunnel traps, prism traps, and lure types at varying population densities. J. Econ. Entomol. 107, 1496–1501 (2014).
67.    Hanula, J. L. & Sullivan, B. Manuka oil and phoebe oil are attractive baits for Xyleborus glabratus (Coleoptera: Scolytinae), the vector of laurel wilt. Environ. Entomol. 37, 1403–1409 (2008).
68.    Kendra, P. E. et al. Temporal Analysis of Sesquiterpene Emissions From Manuka and Phoebe Oil Lures and Efficacy for Attraction of Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). J. Econ. Entomol. 105, 659–669 (2012).
69.    Maner, M. L., Hanula, J. L. & Braman, S. K. Gallery Productivity, Emergence, and Flight Activity of the Redbay Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae). Environ. Entomol. 42, 642–647 (2013).
70.    Coleman, T. W. et al. Developing monitoring techniques for the invasive goldspotted oak borer (Coleoptera: Buprestidae) in California. Environ. Entomol. 43, 729–743 (2014).
71.    Dayan, F. E. et al. p-Hydroxyphenylpyruvate dioxygenase is a herbicidal target site for β-triketones from Leptospermum scoparium. Phytochem. Soc. N. Am. 68, 2004–2014 (2007).
72.    Owens, D. K., Nanayakkara, N. P. D. & Dayan, F. E. In planta Mechanism of Action of Leptospermone: Impact of Its Physico-Chemical Properties on Uptake, Translocation, and Metabolism. J. Chem. Ecol. 39, 262–270 (2013).
73.    Dayan, F. E., Howell, J., Marais, J. P., Ferreira, D. & Koivunen, M. Manuka Oil, A Natural Herbicide with Preemergence Activity. Weed Sci. 59, 464–469 (2011).
74.    Kath Coopey. Preliminary work in vitro results from New Zealand Manuka Bioactives Ltd. (2015).